Evolution of characterized phosphorylation sites in budding yeast.

نویسندگان

  • Alex N Nguyen Ba
  • Alan M Moses
چکیده

Phosphorylation is one of the most studied and important regulatory mechanisms that modulate protein function in eukaryotic cells. Recently, several studies have investigated the evolution of phosphorylation sites identified by high-throughput methods. These studies have revealed varying degrees of evidence for constraint and plasticity, and therefore, there is currently no consensus as to the evolutionary properties of this important regulatory mechanism. Here, we present a study of high-confidence annotated sites from budding yeast and show that these sites are significantly constrained compared with their flanking region in closely related species. We show that this property does not change in structured or unstructured regions. We investigate the birth, death and compensation rates of the phosphorylation sites and test if sites are more likely to be gained or lost in proteins with greater numbers of sites. Finally, we also show that this evolutionary conservation can yield significant improvement for kinase target predictions when the kinase recognition motif is known, and can be used to infer the recognition motif when a set of targets is known. Our analysis indicates that phosphorylation sites are under selective constraint, consistent with their functional importance. We also find that a small fraction of phosphorylation sites turnover during evolution, which may be an important process underlying the evolution of regulatory networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.

To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in ...

متن کامل

Phosphorylation network rewiring by gene duplication

Elucidating how complex regulatory networks have assembled during evolution requires a detailed understanding of the evolutionary dynamics that follow gene duplication events, including changes in post-translational modifications. We compared the phosphorylation profiles of paralogous proteins in the budding yeast Saccharomyces cerevisiae to that of a species that diverged from the budding yeas...

متن کامل

Phosphorylation by Cdc28 Activates the Cdc20-Dependent Activity of the Anaphase-Promoting Complex

Budding yeast initiates anaphase by activating the Cdc20-dependent anaphase-promoting complex (APC). The mitotic activity of Cdc28 (Cdk1) is required to activate this form of the APC, and mutants that are impaired in mitotic Cdc28 function have difficulty leaving mitosis. This defect can be explained by a defect in APC phosphorylation, which depends on mitotic Cdc28 activity in vivo and can be ...

متن کامل

Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1

The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regul...

متن کامل

Multisite Phosphorylation of the Guanine Nucleotide Exchange Factor Cdc24 during Yeast Cell Polarization

BACKGROUND Cell polarization is essential for processes such as cell migration and asymmetric cell division. A common regulator of cell polarization in most eukaryotic cells is the conserved Rho GTPase, Cdc42. In budding yeast, Cdc42 is activated by a single guanine nucleotide exchange factor, Cdc24. The mechanistic details of Cdc24 activation at the onset of yeast cell polarization are unclear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2010